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STABILITY AND FIXED POINTS OF POINT DISSIPATIVE SYSTEMS

Paul Massatt

Abstract: It is known that if T: X -» X is completely continuous
or if there exists an n, > 0 such that Tno is completely con-
tinuous, then T point dissipative implies T is bounded
dissipative and has a fixed point (see Billotti and LaSalle [1]).
This result is used, for example, in studying retarded functional
differential equations.

This result has been extended by Hale and Lopes [8]. They
get the result that if T is an a-contraction and compact
dissipative then T is bounded dissipative and has a fixed point.

This applies, for example, to stable neutral functional differential

equations and certain retarded functional differential equations

of infinite delay. These results are contained in Hale [5].
&$S>The<ﬂnn% result requires the stronger assumption of compact
dissipative. The principle result of this paper will be to get
similar results under the weaker assumption of point dissipative.
#e—ﬁi’pgee&aft’:‘:i;dd additional hypotheses on the space and the
operatof— T. -We—w444~thon—show—h§9>;hese hypotheses are naturally
satisfied for stable neutral functié;;l differential equations
and retarded functional differential equations of infinite delay.
The paper will be divided into four sections. The first will

contain various definitions. The second will contain an abstract

theorem relating point dissipative in one space to bounded __- -/, £ .2
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dissipative in another, and to the existence of a fixed point.

The third section will apply the result to stable neutral functional
differential equations. The final section gives applications to
retarded functional differential equations Qith infinite delay.

This paper is a part of my thesis at Brown University. I aéﬁ:;\\\\\
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STABILITY AND FIXED POINTS OF POINT DISSIPATIVE SYSTEMS

Paul Massatt

1. Definitions.

In the following definitions, X will denote a metric space,

and 49 will denote the set of bounded subsets of ' X.

Definition 1.1: The ®-measure of noncompactness is a map

a: 4 ~+[0,2) defined by o(B) = inf{d/there is a finite cover

of B with sets in X of diameter less than d}.

Definition 1.2: T: X » X is an a-contraction if there is a

k € [0,1) such that for all B € & we have o(TB) < ka(B).

Definition 1.3: T: X + X is &-condensing if for all B € @

we have & (TB) < o(B) with equality if and only if o(B) = 0.

Definition 1.4: A measure of noncompactness on X is a map

B: @+ [0,») with the two properties
(i) B(B) = 0 if and only if C1(B) is compact and
(ii) B(B) < B(C) if B c C.

The definitions of a B-contraction and B-condensing map are

analogous to those of an a-contraction and ®-condensing map.

Definition 1.5: Let T: X+ X and let S be a collection of

sets. A bounded set B « X dissipates S-sets under T if for

= N WA e RS 70N
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any C € S there is an integer no(C) such that 'Tn(C)-c B

for n > no(C). If S8 = {{x}/x € X}, we say T is point
dissipative. If S = {J < X/J is compact}, we say T 1is compact

f[ dissipative. If S contains a neighborhood of any point, we say

T is local dissipative. If S contains a neighborhood of any compact

set, we say T is local compact dissipative. If S contains all

bounded subsets of X, we say T is bounded dissiﬁhiive or

A e a7 it s ol e M 8 o e A bl ) R 2l

ultimately bounded.

Remark 1.1: Local dissipative and local compact dissipative are

-always eﬁuivalent. If T is continuous then local dissipative

and compact dissipative are also equivalent.

Definition 1.6: The orbit of B,Y+(B), for B < X, is defined by

v' () = U T(B)
n=0

Definition 1.7: H: 2 - 4 is a type 2 set operator if for
any B € 4, H(B) = U{H(A)/A 1is a finite subset of B}.

Definition 1.8: Let B € 4. The orbit of B under H, vy(B),

is defined v,';(n) = U H"(B).
n=0

Definition 1.9: H: 49+ 49 is asymptotically smooth if, for

any B € 4 with Y+(B) bounded, there is a compact set J
H

such that Hn(B) +J (i.e. for every € > 0 there exists an n,

such that n > n, implies Hn(B) e J * BE(O), where BE(O) is

TR AT T e

the ball of radius € centered at 0).

Definition 1.10: A set K € @ is stable under H if, for

€ > 0,

it il bl atuch Ehat, for any
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Bec K+ Bg0), H'(B) « K + B,(0) for n > 0.

Definition 1.11: A set K € 9 is uniformly asymptotically

stable if it is stable and there is a §; > 0 such that for any
€ > 0 there is an n, such that B < K + B (0) implies

0 :
Hn(B) c K + BE(O) for n > n,.

Definition 1.12: A set J € 4 is invariant under T if TJ = J.

2. A General Theorem.

Theorem 2.1: Let i: xlc; X, be a compact imbedding where xi

are Banach spaces with norms {('lli. Let T,C, and U be
continuous operators mapping Xy into itself. Denote the topology
of X; by jﬁ. Let T=C+ U with C a contraction in X
and U: (X, 55) > Xy, 3&) mapping bounded sets to bounded sets.
Let C(0) = 0. Let By = {x € X/||x||; <R}. Then the following
conclusions holds:

(1) If Bc Bi and R > 0 then there exists a K = K(L,R)

such that, for any n* with o < n* < o, then U *Tm(B) e Bg

1 0<m<n
implies U ™(B) By-
0<m<n*

(2) If T 1is point dissipative in Xy, then T is bounded

dissipative in X, -

Remark 2.1: It is not necessary to assume that U: (xl, 55) >
(Xl, 5&) takes bounded sets into bounded sets. The conclusions

are naturally weaker and hold only for those bounded sets whose

T T —— e RO ’ ; "
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images under U are bounded.

Proof of 1: Let h: R* » R* be chosen so that U(x1 n Bg) c

i

E‘ Bi(R)‘ Suppose B c Bi and U 1™(0B) c Bﬁ. Let X € [0,1)

B O<me¢n*

% be the contraction constant for C. Let K(L,R) =.(1-A)'1(h(R) +. L),

1

If x € B we can easily show by induction U ™@®) c B. It
O<m<n* ’
is obviously true for n = 0. If it is assumed true for n, then i

+1
Seadie (ST (MRS TE Y

< 2(1-0)"1(h(R) + L) + h(R)

A(1-2)"Y(h(R) + L) + (h(R) + L)

A

(1-\)"L(h(R) + L) = K(L,R).

‘A

Hence, ¥ Tm(B) c B

1
4 . 0<m<n* K*

We shall need the following lemma before proceeding.

Lemma 2.1: Under the hypotheses of Theorem 2.1, there exists a

number nl(L,R) and a number Q(R) > 0 such that if
U Tm(B) c Bé n‘Bi then U Tm(B) — BE(R)° Here we
O<m<n* nl(L,R)fmgn*

have n, independent of n* and Q independent of both n*

and L.

Proof of Lemma: Let 60 >0 and Q(R) = (1-A)'1h(R) + 60.

If BcX; is bounded let ||B||; = sup{||x||;/x € B}. Also,
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K(O,R) = (l-k)'lh(R). If L < K(0,R) we obtain the conclusion
by letting n, = 0 and applying the same inductive argument used
to prove part 1 of the theorem. If L > K(0,R) choose n,

large enough so that Anl(L-K(O,R)) < 60. Now we notice

|ITB{I]; € AL + h(R)

A

A(L+K(0,R)) + A(1-1) " h(R) + h(R)

A(L-K(0,R)) + (1-1) In(R)

A(L-K(O0,R)) + K(O,R)
By induction we get for n < n*
1
|1T"B; 11, < A"(L-K(0,R)) + K(O,R).

Hence, for n, < n < n* we have ||T"B[||; < K(O,R) + 6, = Q(R).

This completes the proof of the lemma.

Proof of Part 2 of the Theorem:

Let Bi dissipate points in xl. By part (1), it is clear that
orbits of points are bounded in X, Since the orbit of any point

is eventually dissipated by Bé, Lemma 2.1 implies that Bé(R)

dissipates points in Xl.
We will now show Y*(Bé

1 + 2

Q(R) and v (x) BC(x)'

point dissipative in X, implies orbits of points are bounded

(R)) is bounded in Xl. Let

x €B We may find a constant C(x) since




4 + 1
in XZ. Thep we have Y (x) < BK(Q(R),C) by part 1. Let no(x)
be chosen so that if n > no(x) then T'x € Bé. Let nl(x) =

nl(K(Q(R),C(x)),R). Let n*(x) = no(x) + nl(x). By continuity we

m, 2 1 2
may choose .6(x) so that Ogm;#*(x)T (Bs(x) n BQ(R)) c BC(x) and
Tm(Bg(x) n Bé(R‘)) < BL where

no(x)<m5n*(x)

B%(x) = {y € Xi/lly-xlli < 8}. Then part 1 implies
)'C 5l and Lemma 2.1 implies
K(Q(R),C(x))

m,,2 1
U T (Bg(x) N By gy

0<m<n*
n*(x) 52 1 1
T (Ba(x) n BQ(R)) c BQ(R)‘
Since Bé(R) is a compact set in Xz, the sets Béﬂ‘) n Bg(x)

form an open cover for which there is a finite subcover
1 2 m & * m S5
{BQ(R) n Bﬁ(xi)}i=1‘ Let N = max{n (xi)}i=1' Then it is clear

that Y+(Bé(R)) = o<kLNTm(Bé(R)) since any point in Bé(R) re-
s h

turns to Bé(R) by the NP iteration.

To show any set Bi is dissipated by Y+(Bé(R)) we use the
same type of argument. We form an open cover of Bi by neighbor-
hoods {Bg(x) n Bi} such that there is an n*(x) such that
Tn*(x)(Bz(x) n Bl) C:B1 Then we take a finite subcover

s+ A Q(R)°

m

j=1- Clearly n > N

2 1,m /s *
(Ba(xi) n BA}i=1 and let N = max{n (xi)}
implies Tn(Bk) c Y+(Bé(R))' Since the argument is analogous I

have only sketched the proof. This completes the proof.

Corollary 2.1: Suppose the assumptions of Theorem 2.1, T is

point dissipative in X, and B-condensing in Xy with B a

Shaduniads! galis
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Proof.

measure of noncompactness satisfying the property B(AUB) = B(A)

if B 1is a finite set. Then there exists a maximal compact

invariant set in Xy which is uniformly asymptotically stable.

Proof: Theorem 2.1 implies that T 1is bounded dissipative. Let

1

BR dissipate bounded sets. Hence, orbits of bounded sets are

bounded. Since T is B-condensing, T is asymptotically shooth

(see Massatt [10]). For any bounded set B

1

there is a compact

invariant set ®_, < By that attracts B. Let w = U w_,. Then
B R B
BES
w e Bé and ®w is invariant. Since T is B-condensing this
implies ® is precompact. Clearly ® attracts all bounded sets.

W is stable since otherwise there would exist an € > 0 and

sequences {xk} c Xl, {nk} + o such that d(xk,w) + 0 and

i :
d(T kxk,w) > € for all K. But {xk} is a bounded set and so

w attracts {xk}. This is clearly a contradiction. The fact
that @ is stable and attracts bounded sets clearly implies
that ® is uniformly asymptotically stable. Q.E.D.

Corollary 2.2: Under the hypotheses of Theorem 2.1, let T be

B-condensing in X1 and point dissipative in XZ with B-satis-
fying the following properties:

(i) B(co A) = B(A) and

B(A U B) = max[B(A),B(B)]. Then T has a fixed point.

(ii)
It is already known that if T 1is pB-condensing and
compact dissipative it has a fixed point (see Massatt [10] for

general measures of noncompactness and Hale and Lopes [8], Nussbaum

[12] for a-measures).
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Since bounded dissipative implies compact dissipative, the corollary

is proved.

3. Applications to Neutral Equations

In this section, we apply the results of Section 2 to show
that a point dissipative periodic stable neutral functional differ-
ential equation has a periodic solution and that the period map
is bounded dissipative in W;. We will also get the existence of
a maximal compact invariant set in W; which is uniformly
asymptotically stable, with respect to the period map T.

Previously, the existence of a fixed point was only known under
the assumption of compact dissipative. Under this assumption, the
existence of a maximum compact invariant set in C which is uni-
formly asymptotically stable is also known. (See Hale [5]).

For r > 0, let C = C([-r,O]JRn) be the space of continuous
functions from [-r,0] to R"™ with the supremum norm. Let
o

W, = WT([-r,O]JRn) be the space of absolutely continuous functions

with derivative essentially bounded. Let

458 AR
W

sup |9(8)| + ess sup [9'(0)]
1 -r,0 =

r,0]

If x(-): [-r,A) +R", A > 0, let x.(-): [-r,0] > R" be
defined by xt(e) = x(t+6) for t € [0,A), -r < ® < 0. Suppose
D: C + R" is linear and D¢ = ¢(0) - L4 where L 1is nonatomic
at zero. Suppose f: mf x ¢ +RY is completely continuous. A

neutral functional differential equation (NFDE) is a relation
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g; Dx, = f(t,x,). (3.1)

A stable neutral functional differential equation (SNFDE) is
; a NFDE for which D is stable; that is, the zero solution of
Dxt = 0 1is uniformly asymptotically stable. We often use
properties of these equations without proof. The details can be
found in Hale [5].

Our first result deals with continuous dependence in WT.

Theorem 3.1: If the solutions of (3.1) are uniquely defined by

the initial data then, for t > to, the solution map XD £ (t,to):
’

o 0 ; A G < : 4
W1 > wl given by XD’_f(t,t0)¢ - R, = ¢, is continuous in ¢.

t
0
It is also continuous with respect to f with the topology of

uniform convergence on bounded sets of B %L,
In general, there is no continuous dependence with respect to

(t,to). This was the motivation for Melvin [11] to discuss

continuous dependence in WT in the weak-*-topology.

Proof: To prove the theorem we need only prove it for time T > 0 ]
arbitrarily small, since for larger times, we may proceed by steps. ;

For T small enough we first prove Xp g (1,0): WI - W:. The
’

proof is based on the Schauder fixed point theorem. Let 31
x(): [-r,T] +R" be the solution with initial condition ¢ € W;. ;
Let z(-) € WJ[0,7]. Let Do = ¢(0) + Lé with L nonatomic. i1

Let ¢T: [-r,T] + R" be defined by

I\




¢(9), 0 € ['1‘,0]
$(0), 6 >0 .

07 (0) =

¢ [-r,0] +R" be defined by

z(t+9) 0 + t >0

z_(90)
t 0 0+t <0 .

¢ (t)
z(t) + ¢(0) t>0.

Is a solution of (3.1) then 2z(:) must be a fixed point of T

t
where (Tz)(t) = -th - L¢: + Lo + I f(s,zs)ds. Since f is
0

completely continuous and L is a contraction on z(°*) for small
enough T, there exists a T > 0, a closed, bounded, convex set

B c W: such that TB < B. Since' B is compact in C and T is

continuous in C we have a fixed point by the Schauder fixed

point theorem.

. - w . - -
To prove continuous dependence in W, 1is a similar argument.

Given an initial function ¢0 € W: and a solution xo(t) defined

on [-r,T] with T > 0, xg = ¢0, we show continuous dependence

with respect to ¢0 snd T, If x(t) = xo(t) + z(t) + ¢(0)
for t € [0,T], xg = ¢0’ is the solution of (3.1) with initial

condition ¢0 + ¢ then z(t) is a fixed point of
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t
T
Lag - g+ v [ [EGxI) < £ s,

(Tz) (®)

For T small enough, L is a contraction on 2z and there is an

E € R' such that TBE c Bé. Since Bé is compact in C we
have a fixed point. Futhermore, as ||¢]|| _ + 0 we may let
%
1

E + 0. Since the fixed point must be in BE, the uniqueness
implies the continuous dependence on f. The proof for continuous

dependence on f is analogous, and so the proof is omitted.

Theorem 3.2: A SNFDE given by (3.1) with f completely continuous,

periodic in t of period w > 0 and whose solution map
XD f(w,O): C +» C 1is point dissipative, has a periodic solution
b

of period w.

Proof: We only prove the theorem under the hypothesis that the
solution map takes bounded sets into bounded sets. The proof
without this hypothesis is just a technical modification using the
remark after Theorem 2.1.

Let X, = C[-r,0] and X

1 2
be the period map. Let TD h(w) be the solution map of the
’

= W;[-r,O]. Let XD,f (w) = xD,f (w,0)

difference equation Dyt = h(t). According to the theory in

Hale [S5] there are projection maps P and Q =1 - P, with Q
finite dimensional and P: C » Yo where Yo = {¢ € C/D$ = 0}.

By the construction, the maps P and Q map Xl into itself also.
26 §

If we let T i Yo be the solution map of Dyt = 0 then,

since D is stable, ||Tgo(w)|l < K\" for some K > 0, » € [0,1).

s

I a——




AR T

e

We may now extend TD - Yo + Y0 to TD o Iy Lw, and still
0
get IITg )] < K\". This is done by using the uniqueness of the
0

0 0
XD’O(W) map.‘ Let z, € YO’ Yo € L and eI-rzk > I_ryo in C,
with |1z 0l¢ < llyolla- Then (X) () [_rzk} > Xpo(®) [_ryo

0
o d
in C. But |3z I-rzkl < llygll, so for all k we get

0
595,00 [l = 11 @zl < 0™1zy] < B2yl -
=T

n n
Hence, ||TD0(N)Y0|| < KX ||YO||¢-

Since D 'is stable we know that XD 0(w) is a stable operator
’

in xz. Also, from the theory in Hale 1im XB 0(w) exponentially

n->o

approaéhes a finite dimensional subspace of C generated by the
constant functions. We will call this map g(°): C~+ C. g may
also be considered as a map g: X1 - X1 which is continuous,
finite dimensional and satisfies g: (Xl, 53) + (Xl, 53) maps
bounded sets to bounded sets.

Let C = XD,O(N)P(-) - g(P(*)). Because of the exponential
decay, there is an equivalent norm in xl where C is a con-
traction.

Now, let U = XD,f (w) - C. We need to show U: (Xl, 55) -
(xl, 53) maps bounded sets to bounded sets and that
xD,f (w): x.1 > xl is condensing. Notice U¢ = Hd + g(P$) where
H$ is the solution at time w to the equation %? Dyt = ho(t)
with initial condition Yo = Qb and hO(t) = f(t,xt) where Xy

solves (3.1) with Xg = ¢. Recall that we are assuming
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xD,f (w): xz -+ Xz maps bounded sets to bounded sets. Let B be
a bounded set in Xz. Since f 1is completely continuous, this
insures {h¢(t)/¢ € B} are bounded uniformly on [0,®]. Since
solutions to Dyt = h¢(t), 90 = %v [Q¢] are bounded we get

U: (Xl,é?é) -+ (Xl,,jq) maps bounded sets to bounded sets.

Next, we will show U is completely continuous, in Xl. Once
we have this it is fairly easy to see xD,f (w): xl + X1 is an
@-contraction.

For any L > 0 we must show U(Bi) is precompact. Since
c1 B!

L
is compact in X,. This implies {h¢(t)/¢ € Bi} lie in a

is compact in XZ we also get Cl{xt/t € [O,N],x0 € Bi}

compact subset of C[0,®] since h¢(t) = f(t,xt). By our con-
tinuous dependence theorem for W: this implies Cl1 H(Bi) is
compact in xl. Since g also has finite dimensional range, we
get U: Xl > Xl is completely continuous.

Hence, xD,f (w) 4is an a-contraction in some equivalent norm
in Xl. Since all the conditions of Theorem 2.1 are now satisfied
we have a fixed point for xD,f (w), and henée a periodic solution

of (3.1) of period w.

Remark 3.1: Under the assumption that xD,f (w): x2 -+ X2 takes
bounded sets to bounded sets, the above proof also shows

XD’:f(w): Xl > xl is bounded dissipative and there ﬁs a maximal
compact invariant set in xl which is uniformly asymptotically

stable.

Remark 3.2: The conclusions still hold if the operator D in the

NFDE is w-periodic in t. There are only minor technical changes
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in the proof for this case.

4. Applications to RFDE's with Infinite Delay.

In this section, we study the existence of periodic solutions

of the equation
k(t) = £(t,x,) Q)

where xt(u) = x(t+u), u € (-=»,0], #: RY x X + R" s completely
continuous, X is a space of functions satisfying certain axioms
to be specified below, and there is an w > 0 such that
f(t,9) = f{t+w,$) for all t,o.
é Our objective is to show that point dissipative systems have
J an w-periodic solution. There are two notions of point dissipative
for these systems. The usual one is the phase space X and the
other is R"™. Let x(t,¢) be the solution of (*) with x(t,$) = ¢(t)
for t € (-»,0]. System (*) is point dissipative in R™ if there is
a bounded set Bp cR™ such that for any ¢ € X there is a t0[¢] >0
such that x(t,$) € Bp for t > t0(¢).

We will shortly give axioms which will show what phase spaces
are permissible. From the axioms one can deduce that point

dissipative in X implies point dissipative in R"™, but the con-

verse need not hold. An example will be given later to illustrate 4

this point. Our theorem will be proved for point dissipative in ﬂ




.
i
|
:

We will first prove results for the space Cg = {vy(): (-=,0]
? >R"Y||x|| = sup IeYex(e)l < @, elimlewx((i)l = 0} with
o€

E(‘“,O) patiogiic

Yy > 0. This should help the reader understand some of the more

general results which will be given later. Let

WY = (xC): (o0 s RY|IxI] = sup e x(e)]

A 8€ (-« ,0]

HeY P x@) ], < =)

Theorem 4.1: If the system (*) is point dissipative in R" and

b §
X = C0

in WT’Y' (if it maps bounded sets to bounded sets), there is a

then if Y' > y > 0 the period map is bounded dissipative

maximal compact invariant set which is uniformly asymptotically

]
stable in wT’Y and it has a fixed point.

g Cz, Xl = W?’Y'. We will show Theorem 2.1,

Corollary 2.1, and Corollary 2.2 apply. <Clearly i: xl G XZ

Proof: Let X

'is a compact- imbedding. The solution map shall be denoted Tf(w).
Clearly Tf(w): Xl > Xl is continuous. We shall assume Te(w)
maps bounded sets to bounded sets (in Co) to avoid technical
details. Let Cp = ¢ - ¢(0) where ¢(0) is the constant
function. C 1is clearly a contraction. Since f is completely
con;inuous, by arguments similar to the last theorem we get

U: (Xl,_ia) > (xl, jﬁ) maps bounded sets to bounded sets and

% that U: Xl + X, 1is completely continuous. This also proves

1
that Tf(w) is an a-contraction. All the hypotheses are now

et oo st batbad N i ki
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satisfied for applying Theorem 2.1, Corollary 2.1, and Corollary
8.2, Q.E.D.

Remark 4.1: There are many other spaces for which this theorem

could apply. For example, we could let le Lz(g) x R! =
{x(*): (-=,0] x R"/||g()xC-)|[, + [Ix(0)[] = [Ix|| <=} and
X, = Wg") » B = (x(): (-=,00 » R/ |x]| = |]g' ()x()]], *

||8'(')*(')||2 + |]x(0)]] <=} with 0 < g(t) < g'(t) < ket for

some K > 0, a > 0, g,g' monotonically increasing and
: t

lim 3$le = 0.

t>-» g t

The local axioms on the phase space will be derived from
Schumacher f13]. The global axioms will come for the most past

from Hale and Kato [6].

Local Axioms: Let X be a metrizable topological vector space

of functions x: (-=,0] > R"™ with Hausdorff equivalence ~ .
If x,y € X we say x ~y 1if there does not exist two open
disjoint sets A and B with x € A and y € B. Let X also

satisfy the following axioms:

(1) For all y € X, o €2R+, the static continuation y°,
defined by

belong to X.

(2) y ~2z implies y =~ z

galol oo e TR P NP 3 .
i il i il IRV CREICHE T WAPVR=IRE N ST EEOEANE
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(3) &: X +R™ defined by &x = x(0) is continuous

(4) The map o eR' yo € X is continuous for all y € X. !%
|
1

(5) For all Tt > 0, the set C,. = {x(t): x is continuous

with support in [-7,0]} belongs to X.

(6) 1If CT has the sup norm then i: C. » X, .the inclusion

T
map, is continuous for all T > 0.

Axiom 3 is stronger than Schumacher's stated assumption but
the author feels Schumacher needs this assumption for his results.

With these assumptions and appropriate hypotheses on f one
can prove existence, uniqueness, continuous dependence, and con-
tinuation theorems. (See Hale and Kato [6] or Schumacher [13].)
We shall always assume f satisfies enough hypotheses to

insure these properties.

Global Axioms:

(1) All continuous bounded functions are in X. The space of
continuous bounded functions with the sup norm will be denoted CB’
(2) Let B = {x%x €B). If Be X is bounded and x € B

implies 6(x) = 0 then B+ 0 as o+ .

(3) The map i: CB + X is continuous.

Statement 2 may be stronger than one desires, and spaces have
been suggested where (2) does not hold. A weaker version of (2)

which suffices for our purposes is as follows.

(2') If B c CB is bounded in sup norm and x € B implies
6(x) = 0 then B° » 0 in X.
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Examples.

(1) Let g(-): (-=,0] +R" be continuous, monotone increasing,
and there exists K > 0, a > 0 such that g(t) < Ke?t. Let

X = {x(*)/x(*): (-»,0] »R™ is continuous and

lx]] =  lim |g(t)x(t)] < =}.
t 0)

€(-»,

For Axiom 2' we may replace the condition g(t) < Ke?t by

lim g(t) = 0.

t>-

0
(2) Let g be monotone increasing with I g <=, lst r>9

and for any locally measurable ¢: (-w,O]-+]R'l whose restriction

to (-r,0] 1is continuous let

: 0 )
11, = € sup [#0)[P + [ g(@)]0(0)[Pa0).
-rfefo -
Let X denote the space of such functions with ||¢l|p < w, This

satisfies Axiom 2'. For Axiom 2 we may add the condition that

there exists a K > 0, a > 0 such that g(t) < [

(3) Let X be the space of continuous functions x(-): (-«,0]

+R™ with the compact open topology.

Theorem 4.2: If the system (*) is point dissipative in R" and

X is a Banach space satisfying global Axioms 1,2, and 3 then

there is an w-periodic solution of (*). Also, for some Y' > 0
WQ’Y'
1

the space may be compactly imbedded into X and is
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bounded dissipative (if the solution map sends bounded sets to

R R

bounded sets) and there exists a compact invariant set which is

E % uniformly asymptotically stable.

Proof: To prove this result we only need show there is a v > 0

i

k l and an imbedding 1i: Cg + X which is continuous. Then we may

apply Theorem 4.1.

F | Let B = {x € Cp/x(0) = 0, |x| < 1}. Let |[[Bl|y=2>0

% i
F | where ||B||y = sup{||x||y/x € B}. Let o > 0 be chosen so that i

||B°||’ Pol for some po < 1. Choose 01 so that Py < pl <1

and let Y > 0 be chosen so that e'aY = pl. I claim 1i: Cg + X

is a continuous imbedding. Since CB is dense in Cg and any
sequence of elements in Cg n CB which is Cauchy in Cg is also
Cauchy in X. We get that 1i: CEC; X is a continuous

imbedding. Q.E.D.

We now state the main result of this section.

Theorem 4.3: If system (*) is point dissipative in R™ then there

is an w-periodic solution of (*). This theorem removes the re-

striction that X be a Banach space and replaces the condition
that X satisfy global Axiom 2 with the weaker global Axiom 2'.

The proof will use the following two results.

Theorem 4.4 (Horn's Theorem [9]): Let So c S1 c Sz be convex

p ; subsets of a Banach space X with So,s2 compact and S1 open
k| in SZ' Let T: S2 + X be a continuous mapping such that, for

ﬁ some integer m > 0, TjSI c S2 for O < j<m-1 and Tjsl c sO
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for j >m. Then T has a fixed point.

The proof of the next theorem is identical to the proof of a

Theorem 4.1 in Massatt [10]. The proof will be given here, though.

Theorem 4.5: Let Xo and xl be two Banach spaces with a con-

tinuous imbedding i: X;& X;. Let

A be the collection of

bounded sets in X,. Let H:’ 2, * _Qo be a type 2 set operator.
Let B: 90 + [0,%) be a map satisfying the following properties.
(1) If B € _Qo then B(B) = 0 if and only if Clxl(B) is
compact in Xl.
(2) Let A,B € _Qo and let B be a finite set, then
B(A U B) = B(A). Under these conditions, if H is B-condensing

then H restricted to 90 is asymptotically smooth in Xl.

Proof of Theorem 4.4: Let Y+(B) € go. Let 9(B) =
n
Ux,m M/} + =, x, € HXB)}. Let P({x,n}) = {x).
Let n = sup{B(Ph/h € 2D(B)}. Note n <o
since Y+(B) € 90. We first show there is an h* = {x;,ni. 3
2(B) such that B(Ph") = n. Let {hj} © D(B) be a sequence

with B(Ph;) » n. Let ﬁj = {(qon) € hi/my > j}. Let

o e .
W=y hj reordered in any way. Then we have h” € 9(B) and
o1

J ~
so n'> B(h") > B(h;) = B(h;) + n as j »=. Hence, B(h") = m.

" m
Now for. each (x;,n;) € h* there is a set {xf(*,n; - 1}:‘1_‘1 c

*®
n, -1
Hk

(B) * Z such that x; € H({xi*}). Let

T R
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-] . m .
g = U] ,ny - 13.5 € 9(B). Hence, n > B(g*) > B(Hg*) > B(h")
k=1 1=
= n with equality if and only if B8(g*) = 0. Hence, n = 0.
Now it is easy to see that there is a compact set J c Xl
such that Hn(B) + J in the Hausdorff metric. One may use

Lemma 3.1 in Massatt [10].

Proof of Theorem 4.3: Let ||x|| be the norm of x in Xl or

the distance from zero under some metric for X. Let |x| be

the sup norm for any x € Cp. Let By = {x € Cp/x(0) = 0, |x| < N}.

If AcX, let ||A}| = sup{||x]]|: x € A}. Pick o, + = such
that o, =0 and [|B™|| <L for n> 2. Let h(t)
n zn =

(t+0,,1)/n(0,1-01) - (0,+t)/(n+1) (0, ,1-0,), i.e.h(-0 ) = L1 and

h(*) connects these points with straight lines. Hence, we also
have h(-) strictly increasing. This allows us to define two

Banach spaces.

X; = {x € C(-=,00/[Ix|], = supo)lh(-)x(-)l <.,

e('“s

elimlh(-)x(-)l = 0}.

1/2
X, = {x € Wioc(-m,O]/HxH1 = sup )lh /

(x| +
ee('wso .

LA OHOTINERS

It is clear CB is dense in xz. Any Cauchy sequence of

elements in Cp with ||*]|, is Cauchy in X. Hence, we may

consider Xz + X with a continuous imbedding. From Arzela-Ascoli's




theorem, we also get 1i: X1C4 Xz is a continuous, compact
imbedding.

Under the general axioms imposed on X above, we cannot apply
Theorem 2.1 directly, nor can we expect to get the solution map
to be bounded dissipative in Xl. However, the propf will be in

the same spirit.

As in Theorem 4.1, let Te(w): X + X be the solution map

from initial time 0 to time @, Tg(w)¢ = x,(-,$). Clearly,

Tf(w): Xi > Xi. We assume Tf(w) maps bounded sets to bounded
sets. The removal of this restriction involves only technical
details. Let (¢ = ¢"- ¢ (0) where ¢(0) is the constant func-
tion. Let U¢ = Tf(w)¢ - C¢. Since f is completely continuous,
by arguments similar to the last theorem, we get U: (Xl, 55) -+
tXl,.ia) maps bounded sets to bounded sets. One problem we
immediately encounter is that C may not be a contraction under

any equivalent norm.

The proof that U: X1 + X is completely continuous is

1

“identical to the last thenrem. Our goal now will be to show that
in X1 we have sets SO’Sl’ and S2 satisfying all the hy-
potheses of Theorem 4.2.

Let A c xl be any bounded set and let Ar = (x(+): [-r,0] »
Rp/x(°) is the restriction on [-r,0] of a function in A}. Let
r(A) = sup{r/Cl Ar is compact in W:[-r,O]}. Let B(A) = TI%TIT .
Hence B: .QH + [0,2) is well-defined.

Let X, = {x € W}°°(-=,01/]|x| |y = suplh()/3x()]

+ ||h(~)1/3:k(')||°° < w}, The same arguments as before show
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U: Xo > Xo and U: (xo,,gg) -+ (xo, 95) maps bounded sets to
bounded sets.
Bm“ Gl . Cp 0
Let R dissipate points. Let BR c BQ(R)‘ 1f

x € C1 Bg(R) then x 1is clearly dissipated by C1 Bg(R)' Let
Yy € C1 Bg(R) be chosen so that for all t € (-»,0] we have
h)3y(t) = @r). Let z() = y() - y*). Them z(-) > 0
since h(-:) 1is strictly monotone increasing. This defines a set
A = (x(-)/|x(t)] < z(t) for ai1 t € (-B,0]). Then any

0 ‘ e 0
X € Cl(BQ(R) + A) 1is also dissipated by Cl1 BQ(R)‘ Now for every

X € Cl(Bg(R) + A) there exists an n > 0, € > 0 such that

TP (@){({x} + B2) n Cl(Bg(R) + A)} e C1 Bg(R). Because

Cl(Bg(R] + A) 1is compact in X2 there is a finite subcover of such
sets and a maximum N such that n, corresponding to the finite

subcover satisfy n; < N. Then, clearly Y+(C1 Bg(R) + A) =

N
UT® (w)(Cl1 B

A
- Q(R)

Now, we may replace A by AN = {x(-)/|x(t)] < z(t) for all
t € (-N,0] and x(t) =0 for t € (-w,-N]}; Then we have

N
+ 0 : 0 0
Y (C1 Bopy * A) = N T" (@)(C1 Bypy + Ay). Let D = CL Bypy + Ay

n=1

Define the set operator H: 5?0 - _Q% by H(B) = co[Tf (w)y+(B n D)].

The map H is g-condensing and type 2. H,Xj,X;, and B satisfy
all the properties of Theorem 4.4. Hence, H is aéymptotically
smooth. Because of the continuity, H: .Q% + %, defined by

H(B) = C1 cof Tf(w)y+(B n D)] is also asymptotically smooth. Let

% :
E = FHH“(D). This is nonempty, bounded in Xy» compact in X;, and
n-
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convex. Now, let Sy = Cl Bg(R) NE, S =DNE, and S, = E.

Applying Theorem 4.3 we get a fixed point of Tf(w). This

implies a periodic solution to (*) of period . This completes

the proof.

ki,
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